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Pitfalls in the Use of DNA Microarray Data for
Diagnostic and Prognostic Classification

Richard Simon, Michael D. Radmacher, Kevin Dobbin, Lisa M. McShane

DNA microarrays have made it possible to estimate the level
of expression of thousands of genes for a sample of cells. Al-
though biomedical investigators have been quick to adopt this
powerful new research tool, accurate analysis and interpretation
of the data have provided unique challenges. Indeed, many in-
vestigators are not experienced in the analytical steps needed to
convert tens of thousands of noisy data points into reliable and
interpretable biologic information. Although some investigators
recognize the importance of collaborating with experienced bio-
statisticians to analyze microarray data, the number and avail-
ability of experienced biostatisticians is inadequate. Conse-
quently, investigators are using available software to analyze
their data, many seemingly without knowledge of potential pit-
falls. Because of serious problems associated with the analysis
and reporting of some DNA microarray studies, there is great
interest in guidance on valid and effective methods for analysis
of DNA microarray data.

The design and analysis strategy for a DNA microarray ex-
periment should be determined in light of the overall objectives
of the study. Because DNA microarrays are used for a wide
variety of objectives, it is not feasible to address the entire range
of design and analysis issues in this commentary. Here, we
address statistical issues that arise from the use of DNA micro-
arrays for an important group of objectives that has been called
“class prediction” (/). Class prediction includes derivation of
predictors of prognosis, response to therapy, or any phenotype or
genotype defined independently of the gene expression profile.

EXPERIMENTAL OBJECTIVES DRIVE DESIGN
AND ANALYSIS

Good DNA microarray experiments, although not based on
gene-specific mechanistic hypotheses, should be planned and
conducted with clear objectives. Three commonly encountered
types of study objectives are “class comparison,” “class predic-
tion,” and “class discovery” ().

Class comparison is the comparison of gene expression in
different groups of specimens. The major characteristic of class
comparison studies is that the classes being compared are de-
fined independently of the expression profiles. The specific ob-
jectives of such a study are to determine whether the expression
profiles are different between the classes and, if so, to identify
the differentially expressed genes. One example of a class com-
parison study is the comparison of gene expression profiles of
stage I breast cancer patients who are long-term survivors with
the gene expression profiles of those who have recurrent disease.
Another example is the comparison between gene expression
profiles in breast cancer patients with and without germline
BRCA1 mutations (2).

Class prediction studies are similar to class comparison stud-
ies in that the classes are predefined. In class prediction studies,
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however, the emphasis is on developing a gene expression-based
multivariate function (referred to as the predictor) that accu-
rately predicts the class membership of a new sample on the
basis of the expression levels of key genes. Such predictors can
be used for many types of clinical management decisions, in-
cluding risk assessment, diagnostic testing, prognostic stratifi-
cation, and treatment selection. Many studies include both class
comparison and class prediction objectives.

Class discovery is fundamentally different from class com-
parison or class prediction in that no classes are predefined.
Usually the purpose of class discovery in cancer studies is to
determine whether discrete subsets of a disease entity can be
defined on the basis of gene expression profiles. This purpose is
different from determining whether the gene expression profiles
correlate with some already known diagnostic classification.
Examples of class discovery are the studies by Bittner et al. (3)
that examined gene expression profiles for advanced melanomas
and by Alizadeh et al. (4) that examined the gene expression
profiles of patients with diffuse large B-cell lymphoma. Often
the purpose of class discovery is to identify clues regarding the
heterogeneity of disease pathogenesis.

L1MITATIONS OF CLUSTER ANALYSIS FOR
CLASS PREDICTION

One of the most common errors in the analysis of DNA
microarray data is the use of cluster analysis and simple fold
change statistics for problems of class comparison and class
prediction. Although cluster analysis is appropriate for class dis-
covery, it is often not effective for class comparison or class
prediction. Cluster analysis refers to an extensive set of methods
for partitioning samples into groups on the basis of the similari-
ties and differences (referred to as distances) among their gene
expression profiles. Because there are many ways of measuring
distances among gene expression profiles involving thousands
of genes and because there are many algorithms for partitioning,
cluster analysis is a very subjective analysis strategy.

Cluster analysis is considered an unsupervised method of
analysis because no information about sample grouping is used.
The distance measures are generally computed with regard to the
complete set of genes represented on the array that are measured
with sufficiently high signals, or with regard to all the genes that
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show meaningful variation across the sample set. Because rela-
tively few genes may distinguish any particular class, the dis-
tances used in cluster analysis will often not reflect the influence
of these relevant genes. This feature accounts for the poor results
often obtained in attempting to use cluster analysis for class
prediction studies.

Cluster analysis also does not provide statistically valid quan-
titative information about which genes are differentially ex-
pressed between classes. Investigators often use simple average
fold change measures or visual inspection of a cluster image
display to identify differentially expressed genes. However, av-
erage fold change indices do not account for variability in gene
expression across samples within the same class; some twofold
average effects represent statistically significant differences and
some do not. Neither fold change indices nor visual inspection of
cluster image displays enable the investigator to deal with mul-
tiple comparison issues in a statistically valid manner. For ex-
ample, in examining expression levels of thousands of randomly
varying genes, there may be many genes that spuriously appear
to be differentially expressed between two classes on the basis of
visual inspection or fold change thresholds.

CrASS PREDICTION USING SUPERVISED METHODS

For class prediction studies, it is more appropriate to use a
supervised method (i.e., one that makes distinctions among the
specimens on the basis of predefined class label information)
than an unsupervised method, such as cluster analysis. Super-
vised class prediction is usually based on the assumption that a
collection of differentially expressed genes is associated with
class distinction.

The first step toward constructing the class predictor (some-
times called the classifier) is to select the subset of informative
genes. The second step is often to assign weights related to the
individual predictive strengths of these informative genes. Pre-
dictors based on linear combinations of the weighted intensity
measurements of the informative genes have been proposed
(1,5). One alternative method is to use a dimension reduction
technique such as principal components analysis or partial least
squares on the informative genes and to base the prediction on
the resulting factors (6—8). Many other methods for defining a
multivariate predictor have been described (9,10). The final step
in constructing the classifier is to define the prediction rule. For
example, in a two-group classification where a single predictor
is computed, the classification rule may simply be a threshold
value; a specimen is classified as being in one group if the
derived predictor value is less than the threshold and classified
as being in the other group if the derived predictor value is more
than the threshold.

One major limitation of supervised methods is overfitting the
predictor. Overfitting means that the number of parameters of
the model is too large relative to the number of cases or speci-
mens available. Because the model parameters are optimized for
the data, the model will fit the original data but may predict
poorly for independent data. This happens because the model fits
random variations within the original data that do not represent
true relationships that hold for independent data. Consequently,
it is essential to obtain an unbiased estimate of the true error rate
of the predictor (i.e., the probability of incorrectly classifying a
randomly selected future case).

Methods for obtaining unbiased estimates of a predictor’s
error rate include leave-one-out cross-validation or application
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of the prediction rule developed from a supervised analysis of
one dataset to an independent dataset. By using these techniques,
it is possible not only to evaluate overfitting the predictor, but
also to compare various prediction methods and assess which
ones are less prone to overfitting. The appropriate use of leave-
one-out cross-validation and validation of independent datasets
is discussed in the next two sections.

CROSS-VALIDATION OF PREDICTION ACCURACY

The performance of a class prediction rule is best assessed by
applying the rule created on one set of data (the training set) to
an independent set of data (the validation set). Because most
clinical research laboratories have access to only a limited num-
ber of tumor samples, withholding a substantial proportion of the
samples from the training set for the sake of creating a validation
set may considerably reduce the performance of the prediction
rule. Cross-validation procedures use the data more efficiently.
A small number of specimens are withheld, and most of the
specimens are used to build a predictor. The predictor is used to
predict class membership for the withheld specimens. This pro-
cess is iterated, leaving out a new set of specimens at each step,
until all specimens have been classified. In leave-one-out cross-
validation, for example, each specimen is excluded from the
training set one at a time and then classified on the basis of
the predictor built from the data for all of the other specimens.
The leave-one-out cross-validation procedure provides a nearly
unbiased estimate of the true error rate of the classification pro-
cedure. The estimated error rate applies to the procedure used to
build the classifier rather than to the specific prediction model
based on all the data, because there is a different classifier for
each leave-one-out training set (1/,/2). Other cross-validation
methods omit more than one specimen at a time (/3) and also
produce nearly unbiased estimates.

In the previous section, three common components of class
prediction methods were listed: 1) selection of informative
genes, 2) computation of weights for selected informative genes,
and 3) creation of a prediction rule. It is important that all three
steps undergo the cross-validation procedure. Failure to cross-
validate all steps may lead to substantial bias in the estimated
error rate.

We performed a simulation to examine the bias in esti-
mated error rates for a class prediction study with various levels
of cross-validation (see supplemental information at http://
jncicancerspectrum.oupjournals.org/jnci/content/vol95/issuel/
index.shtml and at http://linus.nci.nih.gov/~brb for a full de-
scription of the simulation). We considered two types of leave-
one-out cross-validation: one with removal of the left-out
specimen before selection of differentially expressed genes and
one with removal of the left-out specimen after gene selection
but before computation of gene weights and application of the
prediction rule. We also computed the resubstitution estimate of
the error rate (this estimate results from building the predictor on
the full dataset and then reapplying it to each specimen for
classification purposes). In each simulated dataset, 20 expres-
sion profiles of 6000 genes were randomly generated from the
same distribution. Ten profiles were arbitrarily assigned to class
1 and the other 10 profiles to class 2, creating an artificial sepa-
ration of the profiles into two classes. Because no true underly-
ing difference existed between the two classes, the class pre-
diction should perform no better than a random guess, with
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estimated error rates for simulated datasets centering around 0.5
(i.e., 10 misclassifications of 20).

The observed number of misclassifications resulting from
each level of cross-validation for 2000 simulated datasets is
shown in Fig. 1. The resubstitution estimate of the error is biased
for small datasets (7/1,12); our simulation confirms this, with
98.2% of the simulated datasets resulting in zero misclassifica-
tions, even though no true underlying difference existed between
the two groups. Moreover, the maximum number of misclassi-
fied specimens obtained using the resubstitution method was
one. Cross-validating the prediction rule after selecting differ-
entially expressed genes from the full dataset does little to cor-
rect the bias, with 90.2% of simulated datasets still resulting in
zero misclassifications. However, when gene selection is also
subjected to cross-validation, we observed results in line with
our expectation: the median number of misclassified profiles
was 11, although the range was large (0-20).

The simulation results underscore the importance of cross-
validating all steps of predictor construction in estimating a true
error rate. A recently published study (/4) also illustrates the
point. van’t Veer et al. (/4) predicted clinical outcome of pa-
tients with axillary lymph node-negative breast cancer (meta-
static disease within 5 years versus disease-free at 5 years) from
gene expression profiles, first by using an incomplete cross-
validation method and then by using a fully cross-validated
method. Their incomplete cross-validation method did not in-
clude reselection of the differentially expressed genes. The in-
vestigators controlled for the number of misclassified recurrent
patients (i.e., the sensitivity of the test) in both situations. To
illustrate the importance of proper cross-validating, we focus
attention on the difference in estimated error rates for the dis-
ease-free patients. The incomplete cross-validation method and
the fully cross-validated leave-one-out method result in esti-
mated error rates of 27% (12 of 44) and 41% (18 of 44), re-
spectively. The incomplete method results in a seriously biased
underestimate of the error rate, probably largely from overfitting
the predictor to the specific dataset.

Although van’t Veer et al. (14) report both the partially and
fully cross-validated estimates of the error rate, it is the smaller
and invalid partially cross-validated estimate that has received
more attention (15). When cross-validation methods are improp-
erly performed, i.e., without repeating all steps of gene selection
and predictor construction within each stage of the cross-
validation, the results can be almost as biased as if cross-
validation had not been used. Unfortunately, this error is com-
mon. In a recent study (16) where decision trees were built from
gene expression data to classify specimens as normal colon or
colon cancer, the authors used a procedure that cross-validated
only the steps that occurred after selection of the informative
genes. The full dataset was used to identify the informative
genes.

VALIDATION ON INDEPENDENT DATA

A class predictor that results in a small, properly cross-
validated error rate for a collection of tumor specimens is a
potentially important finding but one that still requires further
validation. This is especially true for class prediction studies
based on fewer than 50 tumor specimens. The relatively small
sample sizes necessitate validation of the predictor on indepen-
dently collected data for at least two reasons. First, although
cross-validated error estimates are nearly unbiased, they have a
large variance for small sample sizes (/7). For example, a cross-
validated error rate of 0.10 derived from a set of 20 tumors may
have a large associated standard error and does not guarantee a
true error rate of 0.10 for the predictor. The standard error can be
reduced somewhat by using more complex versions of cross-
validation (/7). Second, the tumors used to build the predictor in
the original study may not accurately reflect all characteristics of
the underlying populations of interest; the predictor may ignore
important properties of the larger population or heavily weight
peculiarities of the training set.

An independent validation dataset should ideally be large
enough to demonstrate statistically that predictions are accurate.
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Fig. 1. Effect of various levels of cross-valida-
tion on the estimated error rate of a predictor de-
rived from 2000 simulated datasets. Class labels
were arbitrarily assigned to the specimens within
each dataset, so poor classification accuracy is ex-
pected. Class prediction was performed on each
dataset as described in the supplemental infor-
mation (http://jncicancerspectrum.oupjournals.
org/jnci/content/vol95/issuel/index.shtml and
http://linus.nci.nih.gov/~brb), varying the level
of leave-one-out cross-validation used in the pre-
diction. Vertical bars indicate the proportion of
simulated datasets (of 2000) resulting in a given
number of misclassifications for a specified
cross-validation strategy.
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Tumor class prediction results are often reported for very small
validation sets. For example, from the gene expression profiles
of 23 medulloblastoma specimens, MacDonald et al. (/8) built a
predictor that distinguished between metastatic and nonmeta-
static specimens, then validated the predictor on five other speci-
mens (although a prediction was made for only four of the five
validation specimens). All four of the validation specimens for
which a prediction was made were correctly classified. Although
this is a promising result, it provides little information about the
accuracy of the predictor: An exact one-sided 95% binomial
confidence interval of the true error rate, given zero misclassi-
fications of four specimens in the validation set, ranged from 0
to 0.53. On the basis of this validation set, we cannot confidently
state that the predictor performs better than a guess, even though
all specimens were correctly classified. Clearly, a larger valida-
tion set was needed.

It is also important that performance of the predictor be vali-
dated on all the classes for which it was created, with enough
specimens from each class. The validation set of MacDonald et
al. (18) included only nonmetastatic specimens, so no insight is
gained from the validation set concerning the predictor’s perfor-
mance on metastatic specimens, which are more difficult to clas-
sify. However, returning to the study of clinical outcome in
breast cancer by van’t Veer et al. (/4), a validation set of nine-
teen specimens was examined, which contained seven speci-
mens from patients who were disease-free at 5 years. The true
error rate of disease-free specimens is the more interesting rate
in this situation, because the error rate for the metastatic speci-
mens was controlled to be rather small. Two of the seven dis-
ease-free specimens in the validation set were misclassified, re-
sulting in an exact two-sided 95% binomial confidence interval
for the true error rate of disease-free specimens ranging from
0.04 to 0.71. A more balanced number of recurrent and disease-
free cases in the validation set would have provided more infor-
mation about the predictor’s accuracy.

REPORTING THE ERROR RATE

We recommend reporting only properly cross-validated error
rates or error rates derived from sufficiently large independent
validation sets. Some predictors allow a specimen to remain
unclassified if the specimen cannot confidently be assigned to
any of the examined classes. We suggest that reported error rates
account for these unclassified specimens. For example, Mac-
Donald et al. (18) developed a cross-validated predictor on the
basis of the weighted voting method of Golub et al. (/). A
prediction strength index was assigned to each sample, with
numbers close to (+1) indicating a confident prediction of be-
longing to the nonmetastatic group, and numbers close to (-1)
indicating a confident prediction of belonging to the metastatic
group. If the absolute value of the prediction strength index for
a specimen did not exceed a threshold of 0.23, then the specimen
was assigned to an uncertain group. The authors emphasized that
their predictor had an accuracy of 72% (18). However, in this
calculation they did not count samples that their methodology
classified as uncertain. Although “uncertain” may be a clinically
important category, it may also be seen as a failure of the clas-
sification procedure. For example, a predictor that classifies one
sample correctly and calls the rest uncertain has an accuracy of
100% by disregarding unclassified specimens but, at the same
time, is of little practical value. Simply ignoring the unclassified
specimens gives an overly optimistic impression of the predic-
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tor. The percentage of specimens that were correctly classified in
the MacDonald et al. (18) study was 57%, and the percentage of
specimens that were misclassified was 22%; these seem to be
more pertinent statistics.

CrLAIMS FOR NEW CLASS PREDICTION METHODS

A wide variety of class prediction algorithms, including com-
plex new algorithms, are being applied to DNA microarray data.
However, in settings where the number of candidate predictors is
orders of magnitude greater than the number of cases, complex
methods with many parameters often do not perform well when
properly evaluated. Comparisons of class predictors varying in
degree of complexity conducted by Dudoit et al. (/0) demon-
strate this finding specifically for DNA microarray data. Simple
methods such as diagonal linear discriminant analysis and near-
est neighbor classification (18), the weighted voting method (7),
and the compound covariate predictor (2,5) have been very ef-
fective in cancer studies with small numbers of cases. Some
authors have made strong claims about the value of a new pre-
diction algorithm but with no comparison to other algorithms
[e.g., see (6)]. Moreover, some classes are very easy to distin-
guish on the basis of gene expression profiles, but the effective-
ness of an algorithm cannot be evaluated without comparing it to
other algorithms using the same dataset.

CONCLUSION

Many studies profiling gene expression in human cancers
have been completed and are in progress. Some studies (/9-22)
attempt to build predictors of patient prognosis and response to
therapy by using gene expression profiles. Because it is likely
that gene expression profiles will provide information that will
affect clinical decision making, such profiling studies must be
performed with statistical rigor and be reported clearly and with
unbiased statistics. We recommend that supervised methods
rather than cluster analyses be used for class prediction and class
comparison studies. Cluster analyses are less powerful than su-
pervised methods for distinguishing predefined classes, and they
do not provide valid statistical identification of differentially
expressed genes. Biased resubstitution or only partially cross-
validated estimates should either not be reported or should be
clearly represented as unreliable indicators of prediction accu-
racy. If cross-validation is used to estimate prediction accuracy,
then the entire model-building process, including the selection of
informative genes, should be repeated in each cross-validation
training set. If a separate dataset is used for validation, it should
be sufficiently large to provide meaningful confidence intervals
for prediction accuracy. We recommend that investigators in-
clude all test cases in their reported estimates of prediction ac-
curacy and not exclude those that do not give a clear-cut pre-
diction. Finally, we urge investigators not to make strong claims
about the value of new prediction algorithms without comparing
them to more standard prediction methods.
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